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E-mail: sochichi@lnf.infn.it

Abstract: Given a renormalizable theory we construct the dilatation operator, in the

sense of generator of RG flow of composite operators. The generator is found as a differen-

tial operator acting on the space of normal symbols of composite operators in the theory.

In the spirit of AdS/CFT correspondence, this operator is interpreted as the Hamiltonian

of the dual theory. In the case of a field theory with non-abelian gauge symmetry the

resulting system is a matrix model.

The one-loop case is analyzed in details and it is shown that we reproduce known results

from N = 4 supersymmetric Yang-Mills theory.

Keywords: AdS-CFT Correspondence, Renormalization Regularization and

Renormalons, Gauge-gravity correspondence, Renormalization Group.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007025/jhep092007025.pdf

mailto:sochichi@lnf.infn.it
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
0
2
5

Contents

1. Introduction 1

2. The setup 2

2.1 Operator product expansion 5

3. The general case 6

4. One-loop order 8

4.1 One-vertex level 8

4.2 Two-vertex level 10

4.3 Fermionic contribution 15

4.4 Gauge invariance 15

5. Discussion 16

A. Useful formulae 17

B. Over-regularization consistency 18

1. Introduction

AdS/CFT correspondence [1] introduces a correspondence between gauge and string theo-

ries. The central role in this correspondence is played by the scale dependence on the gauge

side. Namely, under this conjecture, gauge invariant composite operators correspond to

physical states of interacting string theory, while their dilatation flow corresponds to the

dynamics of respective states. There were numerous checks of the above conjecture, how-

ever no complete proof of the conjecture was so far obtained (see [2] for a classical review

on AdS/CFT correspondence as well as [3 – 6] for updates).

On the other hand, independently of whether AdS/CFT correspondence in its original

formulation is true or not, description of scaling properties of quantum field model can

be figured out in terms of a dynamical system. In other words one can define a dynam-

ical system whose states are given by composite operators of the field theory model and

dynamical evolution is induced by scale transformations. The main point is the form of

organization of this dynamics.

In this context huge progress was reached in the analysis of planar N = 4 super

Yang-Mills theory (see [7] for a review). Thus the dilatation operator was constructed for

this theory at one-loop order as a second order differential operator acting on the space

of normal symbols of local gauge invariant composite operators as well as a higher order
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differential operator for some sectors of the theory to higher loops [8 – 11]. The planar limit

of this operator was found to correspond to integrable spin chain models [11 – 13], which

allows one to make assumptions about the all-order S-matrix of the theory [14].

Non-planar description can also be given in terms of spin models which generalize

the spin chains by inclusion of a chain fusion and fission interaction [9, 15 – 18]. This

interaction is known to break integrability which prevents one from the use of the power

of Bethe Ansatz. On the other hand, the knowledge of the dilatation operator in terms of

a differential operator on the space of normal symbols of composite operators is enough

to have a description in terms of a matrix model and in case when non-planarity plays

an important role this description appears to be more natural than one in terms of spin

systems [19 – 21].

The progress reached for the N = 4 SYM theory would be nice to extend to other

cases of gauge/string correspondence e.g. quiver theories [22] or deformed SYM [23]. For

the last case a considerable progress was achieved in the study of the scalar sector in the

planar limit [24 – 26]. This case has a special significance, since it deals with conformally

invariant theories.

In fact, there is an infinite family of possible gauge theories of interest [27] and it would

be useful to have a generic formula or ar at least a simple algorithm allowing us to just plug

in the action of the model of interest in order to get the corresponding dilatation operator.

Building such an operator is the aim of present study.

We start with broad assumptions about the model: such as free field propagators

and superficial renormalizability of the interaction and build the dilatation operator by

reducing the perturbative series to few patterns which we call scaling factors. Then the

scaling factors are explicitly evaluated. We use the differential renormalization scheme [28]

in which computation of scaling factors is rather algebraic.

The plan of the paper is as follows. In the next section we give the setup of the

problem. Namely, we describe the assumptions we have about of the model, the quantities

to be calculated and approach to be used. In the third section we consider the general case

of perturbative expansion of dilatation operator in terms of scaling factors. In the fourth

section we analyze the one-loop order of the expansion in details computing all scaling

factors and giving explicit form of dilatation operator. And finally we discuss our result in

the discussion section. Appendices contain useful relations and properties for distributions

as well as some technical parts in order to ease the reading of the main body of the text.

2. The setup

Consider a quantum field theory with massless fields. Assume, that the fundamental excita-

tions of the theory can be parameterized in terms of “letters” ΦA associated to a space-time

point x, e.g. x = 0. The set of letters which contains all elementary fields of the theory as

well as all their derivatives at x we call alphabet. Elementary letters are the fundamental

bosonic and fermionic fields having mass dimension 1 and 3/2 respectively. For the funda-

mental letters we will use the notations φa for bosons and ψαi for the fermions. The free
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correlators are,

Dab(x − y) = φa(x)φb(y) =
1

4π2

δab

(x − y)2
. (2.1)

for two fundamental bosons as well as

D(αi)(βj) = ψαi(x)ψ̄βj(y) =
1

4π2
(γµ)αβ∂x

µ

δij

(x − y)2
, (2.2)

for fermions. Each fundamental letter gives rise to an infinite tower of derivative letters,

which we will denote as φ
(n)
a in the bosonic case and ψ

(n)
αi in the fermionic one hiding the

Lorenz indices of all derivatives into the superscript (n):

φ(n)
a → ∂(µ1

. . . ∂µn)φa. (2.3)

In general throughout this paper a bold-face Latin letters like, n,m, r etc will mean sets

of respectively n,m, r indices. We will treat them as usual sets: n + m denotes the union

of both sets, n − k, where k ⊂ n denotes completion of k in n. Since the trace parts

of derivatives of the letters corresponding to dynamical variables can be removed by the

equations of motion we assume that all derivative letters are traceless. This is denoted by

parentheses encircling the indices: (n).

The correlators of derivative letters are given by acting with respective derivatives on

the fundamental correlators, e.g.

D
(n)(m)
ab (x − y) = φ(n)

a (x)φ
(m)
b (y) =

(−1)m

4π2
∂(n)+(m) δab

(x − y)2
. (2.4)

Basic objects of our analysis are the composite operators which are products of letters.

In the case of gauge systems these operators should also be gauge invariant. If the fun-

damental degrees of freedom are described by fields in adjoint representation of the gauge

group, then the local gauge invariant operators are given by the product of the gauge

invariant “words” which are traces of product of local fields

OA1A2...AL
= tr ΦA1

ΦA2
. . . ΦAL

. (2.5)

Otherwise, the composite operators are just polynomials in the fundamental fields.

In the spirit of [20, 29] we treat the space of composite operators as the Hilbert space

of a quantum mechanical system.

This system is further defined by the following data: the rising operator inserting a let-

ter ΦA, which we (by abuse of notations) call also ΦA; lowering operator Φ̌A, which removes

a letter from the word; the vacuum state |Ω〉 is annihilated by all lowering operators,

Φ̌A |Ω〉 = 0, ∀Φ̌A. (2.6)

Then, an arbitrary word can be identified with the result of action on the vacuum state

of a set of rising operators.
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The above definition of the Hermitian product makes letters ΦA and Φ̌A conjugate.

Another property of the product is that for the field-derivatives-free words it is proportional

to the free vev of the product of normal ordered operators stripped of x-dependence,

〈: (O′)† :: O :〉(0) =
1

(4π2)L
〈O′ | O〉

(x2)
1

2
(∆[O′]+∆[O])

. (2.7)

Generally, it is not true if any of composite operators O or O′ contain a derivative letter,

since the product any letter by this choice of scalar product is orthogonal to its derivatives,

while at the same time their correlators are non-vanishing.

In this picture the role of time parameter is played by the log of the renormalization

scale.

So, in this work we study the scale dependence of operators built of blocks (2.5).

Classically, the scaling properties are given by the dimensionality of the composite operator,

which at its turn is just the sum of dimensionalities of the factors it is made of, e.g.,

∆[OA1A2...AL
] =

L∑

k=1

∆[ΦAk
]. (2.8)

Therefore, the classical dimensionality is given by the following first order operator,

∆0 =
∑

{ΦA}

∆A tr ΦAΦ̌A, (2.9)

where the check denotes the derivative,

Φ̌A =
∂

∂ΦA
. (2.10)

It is not difficult to see that ∆0 is Hermitian with respect to the natural Hermitian product.

As discussed in [19 – 21, 29], the classical dimension operator (2.9) corresponds to the

Hamiltonian of an oscillator system for which each letter represents an oscillation mode.

At the quantum level, however, the composite operators should be renormalized in

order to make their correlators finite. This is achieved e.g. by addition of cut-off scale

dependent counter-terms.1 Thus a renormalized version of a composite operator OI is a

linear combination mixing it with another composite operators,

Oren
I = ZJ

I (µ)OJ , (2.11)

where ZJ
I (µ) define the mixing matrix and depends on the cut-off mass scale µ.

The renormalization modifies the scale dependence of the (renormalized) composite

operator. Due to this the classical dimension ∆0 gets corrected by the anomalous dilatation

operator which is the following matrix,

H = Z−1(µ) · µ
∂Z(µ)

∂µ
. (2.12)

1We use the differential renormalization scheme, where no explicit addition of counter-terms is needed.
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For a divergent Green function G throughout this paper we will use square brackets

to denote the scale dependence of its renormalized part i.e.,

[G] ≡ µ
∂Gren

∂µ
. (2.13)

As a regularization tool we will use the real space differential renormalization

scheme [28].

2.1 Operator product expansion

The counter-terms needed to renormalize a composite operator OI can be obtained from

the analysis of the correlator of OI with any composite operator O,

〈: O :: OI :〉 = 〈: O : e
R

:Vint: : OI :〉0, (2.14)

where the last expectation value is taken in the free theory. The last expression can be

evaluated using the Wick theorem. It is given by all possible pair correlators between fields

in : O :, : O′ : and in factors of interaction exponent e
R

:V : in (2.14). We are interested in

counter-terms the divergences appearing from the Wick contractions between interaction

exponent and the probe composite operator.

The Wick expansion can be suitably encoded into the so called functional form

(see [30]),

O = e
± 1

2

R

dy1dy2
δ

δφa
Dab(y1−y2)

δ
δφb : O :, (2.15)

where ± stands for either fermions or bosons.

The Wick expansion of the product of two normal ordered operators : Ox(Φ) : and

: O′
y(Φ) : can be written as,

: Ox(Φ) :: O′
y(Φ) := Ox ∗ O′

y(Φ), (2.16)

where the star-product is given by,

Ox(Φ) ∗ O′
y(Φ) = eΦ̌AxDAB(x−y)Φ̌By : Ox(Φ)O′

y(Φ) :, (2.17)

where Φ̌xA acts only on Ox, while Φ̌yB on O′
y. Equation (2.16) can be generalized to a

triple product which describes the Wick expansion of a a product of three local operators,

: Ox :: O′
y :: O′′

z := exp{Φ̌AxDAB(x − y)Φ̌By + Φ̌AxDAC(x − z)Φ̌Cz

+Φ̌ByDBC(y − z)Φ̌Cz}Ox ∗ O′
y ∗ O

′′
z

≡ Ox ∗ O′
y ∗ O

′′
z , (2.18)

where the checked letter with a subscript containing x, y, z denotes that only the operator

in respective point is differentiated. Generalization to the case of four and more factors is

straightforward. Although, the notations look similar to the non-commutative star product

(see e.g. [31, 32] for a review) the star product in our case is perfectly commutative.

– 5 –



J
H
E
P
0
9
(
2
0
0
7
)
0
2
5

Generically, the terms having looping lines are ill defined due to the presence of non-

integrable divergences at coinciding points of the correlators. These can be regularized and

the singularities removed using an the properties of distributions.

From the functional form of Wick expansion we can figure out that the OPE of the

product of the probe operator : O : with an arbitrary normal operator : O′ : is an action

of a linear differential operator:

Ôx = Ox + DAB(x − y)

(
∂O

∂ΦA

)

x

Φ̌B (2.19)

+[DAC(x − y)DBD(x − y)]

(
∂2O

∂ΦA∂ΦB

)

x

Φ̌CΦ̌D + . . .

Since the regularization and subtraction introduce a dependence on a cut-off parameter

µ, the renormalized product will depend on the cut-off:

[: Ox(Φ) :: O′
y(Φ) :] =

{
[DAB(x − y)]

(
∂O

∂ΦA

)

x

Φ̌B (2.20)

+[DAC(x − y)DBD(x − y)]

(
∂2O

∂ΦA∂ΦB

)

x

Φ̌CΦ̌D + . . .

}
: O′

y(Φ) : .

Now let us apply the rule (2.20) to find the anomalous part coming from the OPE of

the product of interaction exponent and the probe operator,

[
e

R

:Vint: : OI :
]

=

∫
dy[: Vy :: OI :] +

1

2!

∫
dy1

∫
dy2[: Vy1

:: Vy2
:: OI :] + . . . (2.21)

This can be represented as the result of the action of a linear operator which can be

symbolically represented as,

∆ =

∫
dy[Vint(y)∗] +

1

2!

∫
dy1

∫
dy2[Vint(y1) ∗ Vint(y2)∗] + . . . , (2.22)

where the operator [Q∗] is the scale dependent part of Wick expansion of the star-product

of Q (which may contain by itself stars) with the probe operator,

[Q∗] · O = µ
∂

∂µ
[Q ∗ O]reg. (2.23)

The remaining of this paper is devoted to the detailed analysis and explicit construction

of the linear operator (2.22).

3. The general case

Consider the first two terms of the dilatation operator (2.22) in general case.

The first term of (2.22) is further expanded as,
∫

dy [Vint(y)∗] =

∫
dy

[
eΦ̌y ·Dy·Φ̌

]
Vy (3.1)

=

∫
dy

(
1

2
(Φ̌ ⊗ Φ̌)y · [Dy ⊗ Dy] · (Φ̌ ⊗ Φ̌)

+
1

3!
(Φ̌⊗3) · [D⊗3

y ] · (Φ̌⊗3) +
1

4!
(Φ̌⊗4) · [D⊗4

y ] · (Φ̌⊗4) + . . .

)
Vy,
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where to further shorten the notations we introduced the following notational conventions,

Φ̌y · Dy−x · Φ̌x = Φ̌A(y)DAB(y − x)Φ̌(x), (3.2)

(Φ̌ ⊗ Φ̌) · D ⊗ Dy−x · (Φ̌ ⊗ Φ̌) = Φ̌A1
Φ̌A2

DA1B1
DA2B2

Φ̌B1
Φ̌B2

, (3.3)

Φ⊗n = Φ ⊗ Φ · · · ⊗ Φ︸ ︷︷ ︸
n−times

. (3.4)

The subscript y in Φ̌y denotes that respective checked letter acts on the operator in y (in

this case Vy). At the same time, no subscript means that the letter is localized at x = 0.

Subscript below Dy denotes the argument of DAB(y).

In (3.1) we dropped the linear in Φ̌ term, which corresponds to tree level contribution

and requires no scale dependent renormalization.

Let us turn now to the two vertex level for which the dilatation operator is given

by (2.22),

1

2!

∫
dy1

∫
dy2[Vint(y1) ∗ Vint(y2)∗]

=
1

2!

∫
dy1

∫
dy2

[
eΦ̌y1

·Dy1−y2
·Φ̌y2

+Φ̌y1
·Dy1

·Φ̌+Φ̌y2
·Dy2

·Φ̌
]
Vy1

Vy2
. (3.5)

As in the one-vertex case not all terms in the expansion of (3.5) are relevant for

the anomalous dilatation operator. In addition to tree contribution excluded at one point

function level there we should exclude also one particle reducible contribution, which should

be already taken into consideration by the action and the renormalization at the two point

level. Beyond that also the terms corresponding to diagrams containing loops involving

only one of two interaction vertices or not involving the probe composite operator should

be excluded too, since the counterterms for these diagrams are already taken into account

for action renormalization and for one-vertex renormalization.

It is not difficult to check that there are no relevant terms left at the first and second

orders of expansion of (3.5). Most terms go away at the third and fourth orders too. The

remaining terms at these orders are,

1

2!

∫
dy1

∫
dy2[Vint(y1) ∗ Vint(y2)∗] =

1

2

∫
dy1

∫
dy2×

{
(Φ̌y1

⊗ Φ̌y1
⊗ Φ̌y2

) · [Dy1
⊗ Dy1−y2

⊗ Dy2
] · (Φ̌ ⊗ Φ̌y2

⊗ Φ̌)+

(Φ̌⊗3
y1

⊗ Φ̌y2
) · [D⊗2

y1
⊗ Dy1−y2

⊗ Dy2
] · (Φ̌⊗2 ⊗ Φ̌y2

⊗ Φ̌) + . . .

}
Vy1

Vy2
. (3.6)

Thus, to find the generator of dilatations up to the second level, we have to compute the

scaling factors of the type [Dy1
Dy2

Dy1−y2
] for third order and of the type [D2

y1
Dy2

Dy1−y2
]

for the fourth order. In fact, for fundamental boson the first term in left hand side of

equation (3.6) is already finite and thus produce no contribution to the dilatation operator,

but this is not the case if fermions or derivative letters are involved.

In fact, equations (3.1) and (3.5) already give an idea about the structure of the

dilatation operator, while the knowledge of square bracketed parts will fixe the dilatation

operator completely.
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4. One-loop order

Let us restrict ourself to one-loop order in a theory with interaction potential which is of

dimension at most four and at most linear in one-derivative letters. This example includes

most of the bosonic theories e.g. gauge theories in Feynman-’t Hooft gauge.

The divergent one-loop diagrams which produce non-vanishing contribution to the

anomalous part of the dilatation operator appear in the the expansion of the interaction

exponential up to second order in interaction potential. In this section we consider first

two levels in vertex expansion.

4.1 One-vertex level

Application of the one vertex level formula (3.1) yields,

∫
dy [Vint(y)∗] =

∫
dy

[
eΦ̌y ·Dy·Φ̌

]
Vy (4.1)

=

∫
dy

(
1

2
(Φ̌ ⊗ Φ̌)y · [Dy ⊗ Dy] · (Φ̌ ⊗ Φ̌)

+
1

3!
(Φ̌⊗3) · [D⊗3

y ] · (Φ̌⊗3) +
1

4!
(Φ̌⊗4) · [D⊗4

y ] · (Φ̌⊗4)

)
Vy,

where the first term is one-loop, the second and third ones are respectively two and three

loop contributions.

Consider the one-loop part of (3.1) in detail. By the renormalizability V is at most

linear in first derivative letters while the composite operators can contain arbitrary number

and multiplicity of derivatives. This means that we shall keep in the expansion (3.1) only

the terms that are at most linear in φ̌
(1)
y , but impose no restrictions on φ̌(n). Thus we have,

1

2

∫
dy(Φ̌ ⊗ Φ̌)y · [Dy ⊗ Dy] · (Φ̌ ⊗ Φ̌)Vy =

1

2(4π2)2

∫
dy

∑

{(m),(n)}

(−1)n+m ×

(
(φ̌y · φ̌

(n))(φ̌y · φ̌
(m))

[
∂(n) 1

y2
∂(m) 1

y2

]
+

2(φ̌1

y · φ̌(n))(φ̌y · φ̌
(m))

[
∂(n)+1

1

y2
∂(m) 1

y2

])
Vy

≡
1

2(4π2)2
{
∆(n),(m)(φ̌aφ̌b(V )) +

+2∆(n)+1,(m)(φ̌
1

aφ̌b(V ))
}
φ̌(n)

a φ̌
(m)
b , (4.2)

where we introduced the scaling factors,

∆s,s′(V) = (−1)s+s′
∫

x

Vx

[
∂s

1

x2
∂s′ 1

x2

]
, (4.3)

for some main function Vx ≡ V(x).

In the second term of the r.h.s of equation (4.2) we have a derivative ∂(n)+1, which is

not traceless. It can be shown that the trace part of the derivative can be absorbed into a

– 8 –
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local scale independent counter-term redefinition and therefore does not contribute to the

anomalous part of the dilatation operator. Hence, the trace part of ∂(n)+1 can be safely

dropped in (4.2) replacing ∂(n)+1 → ∂(n+1),

∆(n)+1,(m)(V) = −∆(n+1),(m)(V). (4.4)

The scaling factor ∆(n),(m) can be evaluated in the following way,

∆(n),(m)(V) = (−1)m+n

∫

x

Vx

[
∂(n) 1

x2
∂(m) 1

x2

]

= 2n+mn!m!

∫

x

Vx

[
x(n)+(m)

x2(n+m+2)

]

= 2n+mn!m!
∑

r|n

r
′|m

gr,r′γnm

(n+m−2r)

∫

x

Vx

[
x(n+m−2r)

x2(n+m−r+2)

]

= −
∑

r|n

r
′|m

n!m!

2m+n−2r+2(m + n − 2r + 1)!(m + n − 2r)!
gr,r′γnm

(n+m−2r)

×

∫

x

Vx

[
x(n+m−2r)

¤
m+n−2r+1 ln µ2x2

x2

]
, (4.5)

where we used the expansion (A.8) of product of two traceless representations into the

irreducible traceless part and traces.

The scaling factor can be further evaluated to be,

∆(n),(m)(V) =
∑

r|n
r′|m

π2n!m!

2m+n−2r−1(m + n − 2r + 1)!(m + n − 2r)!
gr,r′γnm

(n+m−2r)

×

∫

x

Vxx(n+m−2r)
¤

m+n−2rδ(x)

=
∑

r|n
r
′|m

2π2n!m!

(m + n − 2r + 1)!
gr,r′γnm

(n+m−2r)∂
(n+m−2r)V. (4.6)

This completes the computation of the one-vertex contribution.

Before closing this section let us note that the the system considerably simplifies if

there are no derivative letters in both composite operator and interaction vertex. In this

case we can easily evaluate all one-vertex scaling factors [D⊗2,3,4
y ], which correspond to

respectively two- and three loop orders.

Indeed,

[D⊗k
y ] =

I
⊗k

(4π2)k

[
1

y2k

]
= −µ

∂

∂µ

I
⊗k

(4π2)k
Ck¤

k−1 ln µ2y2

y2

=
2I

⊗k

(4π2)k−1
Ck¤

k−2δ(y). (4.7)
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For the two equalities of (4.7) we used the regularization formula (A.2) and the prop-

erty (A.1) in the appendix A. The numerical coefficients Ck are given there in (A.4).

Plugging the result of (4.7) into (4.1) we get for the first level,

∫
dy [Vint(y)∗] =

C2

4π2
δ̌2V −

C3

3(4π2)2
¤δ̌3V +

C4

12(4π2)3
¤

2δ̌4V. (4.8)

Here we introduced the operator δ̌ defined as,

δ̌V = φ̌a(V )φ̌a, (4.9)

where the first checked letter φ̌a acts only on V .

Now taking the interaction potential V to be one of the scalar self-interaction in N = 4

SYM,

V =
g2

4
tr[φa, φb]

2 (4.10)

we get for the first term in (4.8)

1

16π2
δ̌2V =

1

16π2
tr

(
: [φa, φb][φ̌a, φ̌b] : + : [φa, φ̌b][φ̌a, φb] : + : [φa, φ̌b][φa, φ̌b] :

)

=
1

8π2
tr

(
: [φa, φb][φ̌a, φ̌b] +

1

2
: [φa, φ̌b][φa, φ̌b] :

)
, (4.11)

where the checked letters in the colons never act on the non-checked letters within the

same group. Also we used that

: [φa, φ̌a] :≈ 0, (4.12)

when acting on gauge invariant composite operators.

Let us note that (4.11) is precisely the one-loop N = 4 SYM dilatation operator in

the compact SO(6) sector found in [8]. The remaining terms in (4.8) correspond to two-

and three-loop contribution coming from the Feynman diagrams with a single interaction

vertex.

4.2 Two-vertex level

Let us turn to the two vertex contribution (3.5) to the dilatation operator. The relevant

terms at this level are

∫
dy1

∫
dy2 × (Φ̌y1

⊗ Φ̌y1
⊗ Φ̌y2

) · [Dy1
⊗ Dy1−y2

⊗ Dy2
] · (Φ̌ ⊗ Φ̌y2

⊗ Φ̌)Vy1
Vy2

. (4.13)

The one-loop part may be divergent exclusively due to presence of derivative letters.

Among the derivative letters present in the composite operator there can be an exchange

by an additional derivative from each vertex. Therefore, taking into account the derivative

– 10 –
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letters the equation (4.13) can be written as,

(Φ̌y1
⊗ Φ̌y1

⊗ Φ̌y2
) · [Dy1

⊗ Dy1−y2
⊗ Dy2

] · (Φ̌ ⊗ Φ̌y2
⊗ Φ̌) =

∑

(n),(m)

(−1)m+n×

(
(φ̌y1

⊗ φ̌y1
⊗ φ̌y2

) · [∂(n)Dy1
⊗ Dy1−y2

⊗ ∂(m)Dy2
] · (φ̌(n) ⊗ φ̌y2

⊗ φ̌(m))

+ 2(φ̌1

y1
⊗ φ̌y1

⊗ φ̌y2
) · [∂(n)+1Dy1

⊗ Dy1−y2
⊗ ∂(m)Dy2

] · (φ̌(n) ⊗ φ̌y2
⊗ φ̌(m))

+ 2(φ̌y1
⊗ φ̌1

y1
⊗ φ̌y2

) · [∂(n)Dy1
⊗ ∂1Dy1−y2

⊗ ∂(m)Dy2
] · (φ̌(n) ⊗ φ̌y2

⊗ φ̌(m))

+ (φ̌1

y1
⊗ φ̌y1

⊗ φ̌1′

y2
) · [∂(n)+1Dy1

⊗ Dy1−y2
⊗ ∂(m)+1′

Dy2
] · (φ̌(n) ⊗ φ̌y2

⊗ φ̌(m))

− 2(φ̌1

y1
⊗ φ̌y1

⊗ φ̌y2
) · [∂(n)+1Dy1

⊗ ∂1′
Dy1−y2

⊗ ∂(m)Dy2
] · (φ̌(n) ⊗ φ̌1′

y2
⊗ φ̌(m))

− (φ̌y1
⊗ φ̌1

y1
⊗ φ̌y2

) · [∂(n)Dy1
⊗ ∂1+1′

Dy1−y2
⊗ ∂(m)Dy2

] · (φ̌(n) ⊗ φ̌1′

y2
⊗ φ̌(m))

)
. (4.14)

Solving the tensor product structure of (4.14) equation (4.14) reduces down to,

(Φ̌y1
⊗ Φ̌y1

⊗ Φ̌y2
) · [Dy1

⊗ Dy1−y2
⊗ Dy2

] · (Φ̌ ⊗ Φ̌y2
⊗ Φ̌) =

1

(4π2)3

∑

(n),(m)

(−1)m+n×

{
(φ̌y1

· φ̌(n))(φ̌y1
· φ̌y2

)(φ̌y2
· φ̌(m))

[
∂(n) 1

y2
1

1

(y1 − y2)2
∂(m) 1

y2
2

]

+ 2(φ̌1

y1
· φ̌(n))(φ̌y1

· φ̌y2
)(φ̌y2

· φ̌(m))

[
∂(n)+1

1

y2
1

1

(y1 − y2)2
∂(m) 1

y2
2

]

+ 2(φ̌y1
· φ̌(n))(φ̌1

y1
· φ̌y2

)(φ̌y2
· φ̌(m))

[
∂(n)

µ

1

y2
1

∂1 1

(y1 − y2)2
∂(m) 1

y2

]

+ (φ̌1
y1

· φ̌(n))(φ̌y1
· φ̌y2

)(φ̌1′

y2
· φ̌(m))

[
∂(n)+1

1

y2
1

1

(y1 − y2)2
∂(m)+1′

ν

1

y2
2

]

− 2(φ̌1
y1

· φ̌(n))(φ̌y1
· φ̌1′

y2
)(φ̌y2

· φ̌(m))

[
∂(n)+1 1

y2
1

∂1′

ν

1

(y1 − y2)2
∂(m) 1

y2
2

]

− (φ̌y1
· φ̌(n))(φ̌1

y1
· φ̌1

′

y2
)(φ̌y2

· φ̌(m))

[
∂(n) 1

y2
1

∂1+1
′ 1

(y1 − y2)2
∂(m) 1

y2

]}
. (4.15)

Let us denote the scaling factors appearing in (4.15) respectively as (−1)m+n∆(n),0,(m),

(−1)m+n∆(n)+1,0,(m), (−1)m+n∆(n),1,(m), (−1)m+n∆(n)+1,0,(m)+1′ etc., depending on the

presence of derivatives in propagators.

Consider the first scale factor smeared with two probe functions V(x) ≡ Vx and W(y) ≡

Wy,

∆(n),0,(m)(V,W) = (−1)m+n

∫
dxdy VxWy

[
∂(n) 1

x2

1

(x − y)2
∂(m) 1

y2

]
, (4.16)
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and do the following formal manipulations (dropping the divergent divergence terms):

∆(n),0,(m)(V,W) =

∫

xy

1

x2y2
∂(n)

x ∂(m)
y

{
VxWy

1

(x − y)2

}

=

∫

xy

1

x2y2

∑

k|n
l|m

∂(n−k)
x Vx∂(m−l)

y Wy∂
(k)
x ∂(l)

y

1

(x − y)2

=

∫

xy

1

x2y2

∑

k|n
l|m

(−1)l∂(n−k)
x Vx∂(m−l)

y Wy∂
(k)+(l)
x

1

(x − y)2
, (4.17)

where in the second equality we used the Leibnitz rule (A.6) for multiple derivatives. For

the last equality of (4.17) we used the possibility to trade the y-derivatives of 1/(x − y)2

for x-derivatives at the price of an extra minus factor.

As a product of two traceless representation can be expanded into irreducible traceless

representations and traces (see (A.8)) and this can be applied to derivatives too, we have,

∂(n)+(m) =
∑

r|n
r′|m
r=r′

gr,r′γnm

n+m−2r∂
(n+m−2r)

¤
r, (4.18)

where the sum runs over two partitions r|n and r′|m of n and m respectively, having the

same length r ≤ min{n,m} and gr,r′ is the product of metric components with first index

in r and second in r′.

Plugging (4.18) into equation (4.17) we have,

∆(n),0,(m)(V,W) =

∫

xy

1

x2y2
×

∑

k|n
l|m

(−1)l
∑

r|k
r′|l

r=r′

gr,r′γkl

k+l−2r∂
(n−k)
x Vx∂

(m−l)
y Wy∂

(k+l−2r)
x ¤

r 1

(x−y)2

=−4π2

∫

xy

1

x2y2

∑

k|n
l|m

(−1)l
∑

r|k
r′|l

r=r′

gr,r′γkl

k+l−2r∂
(n−k)
x Vx∂(m−l)

y Wy×∂(k−r+l−r′)
x ¤

r−1δ(x−y)

=−4π2

∫

x

∑

k|n
l|m

(−1)k
∑

r|k
r
′|l

r=r′

vγkl

k+l−2r

1

x2
∂(n−k)

x Vx∂(k−r+l−r
′)

x ¤
r−1

{
1

x2
∂(m−l)

x Wx

}
,

(4.19)

where in order to get the last equality we integrated out y using the δ-function.

Let us consider the factor

∂(k+l−2r)
x ¤

r−1

{
1

x2
∂(m−l)

x Wx

}
, (4.20)
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in the last line of (4.19). Applying the Leibnitz rule to it, we can redistribute the derivatives

among 1/x2 and W,

∂(k+l−2r)
x ¤

r−1

{
1

x2
∂(m−l)

x Wx

}
= ∂(k+l−2r)∂r−1

∑

s|r−1

∂s
1

x2
∂r−1−s+(m−l)W (4.21)

=
∑

s|r−1
t|r−1

u|k−r+l−r
′

∂s+t+u
1

x2
∂r−1−s+r−1−t+(k+l−2r−u)+(m−l)W.

The derivatives acting on 1/x2 can be expanded in traceless components and traces.

It is not very difficult to see that any trace leads to a local subtraction scale independent

counter-term and can be discarded. Indeed, trace-full contribution in (4.19) contains a

local factor

∼
1

x2
∂(w)

¤
pδ(x) ∼ ∂(w′)

¤
p+1δ(x), (4.22)

which has no dependence on subtraction scale µ. Hence we can restrict ourself to the

analysis of the traceless part of ∂s+t+u in (4.21). Thus, the scale factor reads,

∆(n),0,(m)(V,W) = −4π2

∫

x

∑

k|n
l|m

(−1)k+l
∑

r|k
r
′|l

r=r′

gr,r′γkl

k+l−2r

∑

s|r−1
t|r−1

u|k−r+l−r
′

×

∂(n−k)V∂r−1−s+r−1−t+(k+l−2r−u)+(m−l)W

[
1

x2
∂(s+t+u) 1

x2

]
. (4.23)

The singularity was isolated in the square brackets and can be evaluated to be,

[
1

x2
∂(s+t+u) 1

x2

]
= (−1)s+t+u2s+t+u(s + t + u)!

[
x(s+t+u)

x2(s+t+u+2)

]

=
(−1)s+t+u+1x(s+t+u)

22(s+t+u)+2(s + t + u)!

[
¤

s+t+u+1 ln µ2x2

x2

]

= 2π2 (−1)s+t+u

s + t + u + 1
∂(s+t+u)δ(x). (4.24)

Plugging (4.24) into (4.23) we get,

∆(n),0,(m)(V,W) = −8π4
∑

k|n
l|m

(−1)k
∑

r|k
r′|l

r=r′

gr,r′γkl

k+l−2r

∑

s|r−1
t|r−1

u|k−r+l−r
′

1

s + t + u + 1
×

∂(s+t+u)
{
∂(n−k)V∂r−1−s+r−1−t+(k+l−2r−u)+(m−l)W

}
. (4.25)

Using (4.25), we can readily write the first term in the r.h.s. of (4.15),

1

8π2
(φ̌1 · φ̌

(n))(φ̌1 · φ̌2)(φ̌2 · φ̌
(m))∆(n),0,(m)(V1, V2), (4.26)

– 13 –



J
H
E
P
0
9
(
2
0
0
7
)
0
2
5

where the checked letter φ̌i, i = 1, 2 acts only on the respective vertex Vi before the action

of other derivatives i.e. (4.26) reads,

1

8π2
∆(n),0,(m)(φ̌aφ̌b(V ), φ̌bφ̌c(V ))φ̌(n)

a φ̌(m)
c . (4.27)

The remaining scaling factors in (4.15) are evaluated in a similar way. Here we just

state the results,

∆(n)+1,0,(m)(V,W) = −8π4
∑

k|n
l|m

(−1)k
∑

r|k
r
′|l

r=r′

gr,r′γkl

k+l−2r

( ∑

s|r−1

t|r−1

u|k+l−2r

1

s + t + u + 1
×

∂(s+t+u)

{
∂(n−k)+1V∂r−1−s+r−1−t+(k+l−2r−u)+(m−l)W

+∂(n−k)V∂r−1−s+r−1−t+(k+l−2r−u)+(m−l)+1W

}

+
∑

s|r−1

t|r−1

u|k+l−2r+1

1

s + t + u + 1
×

∂(s+t+u)

{
∂(n−k)+1V∂r−1−s+r−1−t+(k+l−2r+1−u)+(m−l)W

})

= −∆(n),0,(m)(∂
1V,W) − ∆(n),1,(m)(V,W), (4.28a)

∆(n),1,(m)(V,W) = 8π4
∑

k|n
l|m

(−1)k
∑

r|k
r′|l

r=r′

gr,r′γkl

k+l−2r

( ∑

s|r−1
t|r−1

u|k+l−2r′

1

s + t + u + 1
×

∂(s+t+u)

{
∂(n−k)V∂r−1−s+r−1−t+(k+l−2r−u)+(m−l)+1W

}

+
∑

s|r−1
t|r−1

u|k+l−2r+1

1

s + t + u + 1
×

∂(s+t+u)

{
∂(n−k)+1V∂r−1−s+r−1−t+(k+l−2r+1−u)+(m−l)W

})
,(4.28b)

∆(n)+1,0,(m)+1′(V,W) = ∆(n),0,(m)(∂
1V, ∂1

′
W) + ∆(n),1,(m)(V, ∂1

′
W)

−∆(n),1′,(m)(∂
1V,W) − ∆(n),1+1′,(m)(V,W). (4.28c)

∆(n)+1,1′,(m)(V,W) = −∆(n),1,(m)(∂
1V,W) − ∆(n),1+1′,(m)(V,W), (4.28d)
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∆(n),1+1′,(m)(V,W) = −8π4
∑

k|n
l|m

(−1)k
∑

r|k,l
r̃|k+l−2r+1+1

′

gr,r′gr̃,r̃′γk,l
k+l−2rγ

1+1
′,k+l−2r

k+l−2r+1+1′−2r̃ ×

∑

s,t|r+r̃−1

u|k+l−2r+1+1
′−r̃

∂(s+t+u)

s + t + u + 1
×

{
∂(n−k)V∂r+r̃−1−s+r+r̃−1−t+(k+l−2r+1+1

′−2r̃−u)+(m−l)W
}

−2π4(−1)m+ng1,1′
∑

k|n
l|m

(−1)l
∑

r|(k)+(l)

∂(r)

r+1

{
∂(n−k)V∂(m)+(k)−rW

}
.

(4.28e)

Summarizing, we can write down the the two-vertex one-loop part of the dilatation

operator in the following form,

∫

y1y2

(Φ̌y1
⊗ Φ̌y1

⊗ Φ̌y2
) · [Dy1

⊗ Dy1−y2
⊗ Dy2

] · (Φ̌ ⊗ Φ̌y2
⊗ Φ̌)V1V2 =

1

(4π2)3

∑

(n),(m)

{
∆(n),0,(m)(φ̌aφ̌b(V ), φ̌bφ̌c(V ))

+2∆(n)+1,0,(m)(φ̌
1

aφ̌b(V ), φ̌bφ̌c(V )) + 2∆(n),1,(m)(φ̌aφ̌
1

b (V ), φ̌bφ̌c(V ))

+∆(n)+1,0,(m)+1′(φ̌1

aφ̌b(V ), φ̌bφ̌
1
′

c (V ))

−2∆(n)+1,1′,(m)(φ̌
1

aφ̌b(V ), φ̌1′

b φ̌c(V ))

−∆(n),1+1′,(m)(φ̌aφ̌
1

b (V ), φ̌1′

b φ̌c(V ))

}
φ̌(n)

a φ̌(m)
c , (4.29)

where various ∆s,s′′,s′′′ are given in (4.25) and (4.28).

4.3 Fermionic contribution

So far we analyzed the case of purely bosonic exchanges. Due to space restriction the

fermionic contribution is not discussed here. However, let us give some technical hints.

To include the fermionic contribution coming from both composite operators and inter-

action vertex we have to do the above computation replacing the bosonic propagator with

the fermionic one (2.2) and taking into account the signs due to fermion anti-commutative

nature.

The scaling factors corresponding to exchange of fermions are basically the same (up to

a sign) as those for exchanging a derivative-free letter into a derivative one or viceversa. The

difference is that the fermionic checked letters are contracted by a γ-matrices in contrast

to just δ-symbols in the bosonic case.

4.4 Gauge invariance

When considering a gauge theory it is important to ensure that the dilatation operator

acts within the subspace of gauge invariant composite operators. In what concerns global
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gauge invariance it is more or less straightforward to see that it is respected by the dilation

operator.

The local gauge invariance is more subtle. As we know, it can be broken by quantum

corrections, but if there is a explicitly gauge invariant renormalization scheme this is not

the case (see e.g. [33]). As the theory was assumed to be a renormalizable and gauge

anomaly free, such a scheme is implied to exist too.

5. Discussion

In this work we gave an explicit construction of the generator of RG dilatations for local

composite operators in a theory with superficially renormalizable interaction. The one-loop

result is given in equations (4.2), (4.4) and (4.5) for one vertex contribution and (4.29) for

the two vertices. For a superficially renormalizable theory there are no expected diver-

gencies and therefore no anomalous contribution to the dilatation operator beyond the

two-vertices at one-loop order.

The obtained results can be applied to any renormalizable scalar or gauge theory. The

inclusion of fermions is straightforward and does not imply any additional computation.

Although we use condensed notations for Lorenz group2 indices which allows us writing

heavy expressions in a relatively compact form, inclusion of fermions still complicates

considerably the output. We hope that more algebraic approach can be used instead which

would allow to treat fermions at the same footing as bosonic fields saving the complexity

of expressions.

Another task would be extending present results to the two-loop order and higher. In

the present work we analyzed the higher loop contribution coming from a single vertex

extension. The higher loop contribution coming from multi-vertex diagrams introduce

new technical difficulties related to overlapping divergencies. Of course, there are well

developed tools to treat such a problem. One may e.g. use the approach of [11] and [34] to

iteratively subtract the divergences3 or use a combination of this approach with differential

regularization used in this work.

On the other hand the higher loop diagrams with overlapping divergences produce

alongside with the log of scale contribution also the higher powers of the log, which cor-

respond to subtractions in divergent sub-diagrams. By tuning the subgraph subtraction

scale one can absorb the linear log term. It would be interesting to understand wether this

implies that the contribution from the diagrams with overlapping divergences reduces to

a superposition of contributions of their lower order sub-diagrams. In this case the com-

plete all-loop dilatation operator could be described in terms of a finite number of basic

diagrams. Such basic diagrams appear only up to four loop order.
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A. Useful formulae

Following formula are useful for differential renormalization.

¤
1

x2
= −4π2δ(x), (A.1)

1

x2k
= −

1

4k−1(k − 1)!(k − 2)!
¤

k−1 ln µ2x2

x2
, k ≥ 2. (A.2)

In particular,
1

x4
= −

1

4
¤

ln µ2x2

x2
. (A.3)

The numerical coefficient in in front of r.h.s. of (A.2) we denote by Ck i.e.,

Ck =
1

4k−1(k − 1)!(k − 2)!
. (A.4)

Let us also give the expression for the scaling dependence of (A.2),
[

1

x2k

]
= 8π2Ck¤

k−2δ(x), (A.5)

where we used eq. (A.1).

Leibnitz rule. Often we apply the Leibnitz rule, which in the case of multiple derivatives

is spelled out as,

∂(n)(f · g) =
∑

k|n

∂(n−k)f∂(k)g, (A.6)

where sum spans all ordered partitions k|n of the set of n indices. The sets k and n − k

are respectively the subsets of taken apart and left indices.

Representation decomposition. Another fact which we use is that the product of

two traceless homogeneous polynomials of xµ can be expanded in products of traceless

polynomials of lower order and traces,

x(µ1 . . . xµn)x(ν1 . . . xνm) =

min(m,n)∑

j=0

γµ1...µn,ν1...νm
α1...αm+n−2j

(x2)jx(α1 . . . xαm+n−2j ), (A.7)

or in the short form,

x(n)x(m) =
∑

r|n
r
′|m

gr,r′γnm

(m+n−2r)x
2jx(m+n−2r). (A.8)

Taking into account, that the traceless homogeneous polynomials are when properly nor-

malized in fact 3-spherical harmonics while the trace corresponds to the singlet represen-

tation of the four-dimensional rotation group, the coefficients γnm
n+m−2r are given by (four

dimensional analogues of) Clebsch-Gordan coefficients.

– 17 –
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B. Over-regularization consistency

When regularizing the singular Green’s functions 1/x2k one my decide whether to include

or not certain polynomials of x inside the regulator factor or to keep it as a outside mul-

tiplier. In particular, this polynomial may include various powers of x2 itself which affects

the choice of the regularization (A.2). Let us prove here, that the result for the scale

dependence is insensitive to wether these factors are included or not, as soon as they are

non-singular. More precisely, consider the Green’s function 1/x2k and regularize it first

directly as prescribed by (A.2). Alternatively, one can represent it as,

1

x2k
≡ x2p 1

x2(k+p)
= −

x2p

4k+p−1(k + p − 1)!(k + p − 2)!
¤

k+p−1 ln µ2x2

x2
. (B.1)

This sort of regularization produces the following contribution to the dilatation oper-

ator (upon acting by µ∂/∂µ),

∼
π2

4k+p−2(k + p − 1)!(k + p − 2)!
x2p

¤
k+p−2δ(x), (B.2)

in contrast to

∼
π2

4k−2(k − 1)!(k − 2)!
¤

k−2δ(x), (B.3)

which is given by the direct regularization. The situation is, that both (B.2) and (B.3) are

equivalent when integrated with a regular function.

To prove the equivalence of (B.2) and (B.3) it is enough to prove the following relation,

x2p
¤

k+p−2δ(x) = 4p (k + p − 1)!(k + p − 2)!

(k − 1)!(k − 2)!
¤

k−2δ(x). (B.4)

This can be easily done by writing the Fourier transform of the eq. (B.4) in spherical

coordinates.
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